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2.1 Directional Derivatives

Recall the definition that f : R→ R is differentiable at a ∈ R if, and only if,

lim
t→0

f(a+ t)− f(a)

t

exists. This cannot be naively extended to vector-valued functions f : Rn →
Rm of severable variables by looking at

lim
t→0

f(a + t)− f(t)

t

since we cannot divide by a vector t ∈ Rn. However, just as we looked at

limits along straight lines, we can first restrict to t ∈ Rn lying on a straight

line through the origin, i.e. t = tv, and define a directional derivative.

Definition 1 Suppose that f : U ⊆ Rn → Rm is a vector-valued function

defined on an open set U and a ∈ U . Given a unit vector v ∈ Rn then the

directional derivative of f at a in the direction v is defined to be

dvf(a) = lim
t→0

f(a + tv)− f(a)

t
,

an element of Rm, if it exists.

If dvf(a) exists for all a ∈ U we have a function dvf : U → Rm.

Note i many authors do not require that v be a unit vector, and the defi-

nition would still be meaningful for a non-unit vector. I like the directional

derivative to depend only on the direction of v which why I assume that v

is a unit vector.

Note ii The directional limit had t→ 0+, a one-sided limit; the directional

derivative has t→ 0. For directional limits I was interested to know if the

directional limit along v was different from that along −v; if they were dif-

ferent it would then imply the limit did not exist. For directional derivatives

1



I want to know that both one-sided limits at 0 exist and are equal, i.e. the

limit is as t→ 0.

If f is a scalar-valued function the definition is easy to verify:

Example 2 Let f(x) = xy2 for x = (x, y)T ∈ R2. Find, from first princi-

ples, the directional derivative of f at a = (2, 1)T in the direction of the unit

vector v = (1,−1)T /
√

2.

Solution Consider

f(a + tv)− f(a)

t
=

1

t

(
f

((
2

1

)
+

t√
2

(
1

−1

))
− f

((
2

1

)))

=
1

t

(
f

((
2 + t/

√
2

1− t/
√

2

))
− f

((
2

1

)))

=
1

t

((
2 +

t√
2

)(
1− t√

2

)2

− 2

)

=
1

t

((
1√
2
− 4√

2

)
t+

t3

2
√

2

)

→ − 3√
2

as t→ 0. Hence

dvf(a) = − 3√
2
.

�

The following result reduces directional derivatives of vector -valued func-

tions to directional derivatives of scalar -valued functions.

Proposition 3 Suppose that f : U ⊆Rn → Rm is a function defined on an

open set U with component functions f i : U ⊆Rn → R, 1≤ i≤m. Then, for

unit v ∈ Rn and a ∈ U ,

dvf(a) exists ⇐⇒ ∀ 1≤ i≤m, dvf
i(a) exists.

Further

dvf(a) exists =⇒ ∀ 1≤ i≤m, (dvf(a))i = dvf
i(a) .

2



Proof Follows from the result in Section 1 that limx→a g(x) = b if, and only

if, limx→a g
i (x) = bi for all components 1 ≤ i ≤ m. �

Example 4 Let f : R2 → R2 be given by

f(x) =

(
xy2

x2y

)
,

for x = (x, y)T ∈ R2. Find, from first principles, the directional derivative

of f at a = (2, 1)T in the direction of the unit vector v = (1,−1)T /
√

2.

Solution Question Sheet. But, from Proposition 3 it suffices to find the di-

rectional derivative of each component function. The first component func-

tion was the subject of Example 2. So we are leaving to the student the

calculation of the directional derivative of (x, y)T 7→ x2y. �

Proposition 5 If L : Rn → Rm is a linear map and v ∈ Rn is a unit vector

then dvL exists and dvL (a) = L (v) for all a ∈ Rn.

Proof Let a and unit v ∈ Rn be given. Then for all t 6= 0 we have

L(a + tv)− L(a)

t
=

L(a) + tL(v)− L(a)

t
= L(v) .

Hence dvL(a) = L(v). �

2.2 Partial Derivatives

Recall that the Standard basis for Rn is {ei}1≤i≤n where ei has 0 in all

coordinates except the i-th where it has a 1. The directional derivatives in

the direction of the basis vectors are the well known partial derivatives :

Definition 6 Suppose that f : U ⊆ Rn → Rm is a function defined on an

open set U and a ∈ U . For 1≤ j≤n, the j-th partial derivative of f at

a is defined to be the directional derivative in the direction of the standard

basis vector ej:
∂f

∂xj
(a) = dej f(a) ,

an element of Rm, if it exists.
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We also write djf(a) as shorthand for dej f(a), and thus ∂f(a) /∂xj. So,

to stress the point, the following are interchangeable

djf(a) = dej f(a) =
∂f

∂xj
(a) .

Assume that for f : U ⊆Rn → Rm with a ∈ U the directional derivative

djf(a) exists. Then Proposition 3 says that for 1 ≤ i ≤ m the i-th component

of djf(a) equals the directional derivative of the i-th component of f , i.e.

(djf(a))i = djf
i(a). These can be put together as

djf(a) =


djf

1(a)

djf
2(a)
...

djf
m(a)

 , that is
∂f

∂xj
(a) =


∂f 1(a)/∂xj

∂f 2(a)/∂xj

...

∂fm(a)/∂xj

 .

Note that it is possible that the partial derivatives djf(a) exist for all 1≤
j≤n yet dvf(a) does not exist for some unit vector v. That is

∀ 1≤j≤n, djf(a) exists 6=⇒ ∀ unit v, dvf(a) exists.

See the Question Sheet for an example.

2.3 Fréchet Derivative

As motivation for what follows, given a differentiable function f : R → R
rearrange the definition of derivative

f ′(a) = lim
t→0

f(a+ t)− f(a)

t

as

lim
t→0

f(a+ t)− f(a)− f ′(a) t

t
= 0. (1)

Here, for fixed a ∈ R, t 7→ f ′(a) t is a linear function R→ R, which could

be denoted as La (t) = f ′(a) t.
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Note that, because the limit is 0, we have

lim
t→0

g (t)

t
= 0⇐⇒ lim

t→0

∣∣∣∣g (t)

t

∣∣∣∣ = 0⇐⇒ lim
t→0

∣∣∣∣g (t)

|t|

∣∣∣∣ = 0⇐⇒ lim
t→0

g (t)

|t|
= 0.

So (1) holds if, and only if,

lim
t→0

f(a+ t)− f(a)− f ′(a) t

|t|
= 0. (2)

It is the characterisation of the derivative as the linear function La (t)

satisfying

lim
t→0

f(a+ t)− f(a)− La(t)
|t|

= 0.

which can be generalised.

Definition 7 The vector-valued function f : U ⊆ Rn → Rm is Fréchet

differentiable at a ∈ U if, and only if, there exists a linear map L : Rn →
Rm such that

lim
t→0

f(a + t)− f(a)− L(t)

|t|
= 0.

The linear function L is called the Fréchet derivative of f at a and is

denoted by dfa.

Definition 8 If f is differentiable at each point of U we say that f is a

Fréchet differentiable function on U .

The following result is important but, due to a lack of time, I do not

give a proof in lectures.

Theorem 9 If f : U ⊆Rn → Rm, a function defined on an open set U , is

Fréchet differentiable at a ∈ U then the derivative is unique.

Proof Not given but see the appendix. �

Verifying that the definition holds for a vector -valued function is time-

consuming. The following result reduces the question of a vector-valued

function being Fréchet differentiable to that of each of its scalar -valued com-

ponent functions being Fréchet differentiable. Compare with Proposition 3.
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Proposition 10 Suppose that f : U⊆Rn → Rm is a function defined on an

open set U with component functions f i : U → R, 1 ≤ i ≤m, and a ∈ U .

Then

dfa exists ⇐⇒ ∀ 1≤ i≤m, df ia exists.

Further

dfa exists =⇒ ∀ 1≤ i≤m, (dfa)i = df ia.

Proof (Not in lectures) Recall from Chapter 1 that limx→a g(x) = b if, and

only if, limx→a g
i (x) = bi for all components 1≤ i≤m. Then

lim
x→0

f(a + x)− f(a)− dfa(x)

|x|
= 0,

if, and only if,

lim
x→0

f i(a + x)− f i(a)− (dfa)i (x)

|x|
= 0,

for 1 ≤ i ≤ m. That is, f is Fréchet differentiable at a if, and only if, for all

1≤ i≤m each f i is Fréchet differentiable at a.

But further, if f is Fréchet differentiable at a then (dfa)i satisfies the

definition for the derivative of f i. Yet, by Theorem 9, the Fréchet derivative

of f i is unique and is defined to be df ia. Hence (dfa)i = df ia.

�
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We can now give some examples for scalar-valued functions.

Example 11 If f : R → R is differentiable at a ∈ R (in the manner before

this course) then f has a Fréchet derivative at a with dfa(t) = f ′(a) t for all

t ∈ R.

Solution This is simply (2) above:

lim
t→0

f(a+ t)− f(a)− f ′(a) t

|t|
= 0.

�

For a particular example, the function f(x) = x3 is Fréchet differentiable

for all a ∈ R with Fréchet derivative dfa(t) = 3a2t for all t ∈ R.

Returning to Example 2, when we last looked at directional derivatives.

Example 2 continued Let f(x) = xy2 on R2. By verifying the definition

show that f is Fréchet differentiable at a = (2,−1)T and find the Fréchet

derivative, dfa (t).

Solution With t = (s, t)T we have

f(a + t)− f(a) = f

((
2 + s

−1 + t

))
− f

((
2

−1

))
= (2 + s) (−1 + t)2 − 2

= s− 4t+ 2t2 − 2st+ st2.

The ‘linear part’ of this (i.e. the linear combination of the variables s and t)

is s− 4t, so we guess dfa (t) = s− 4t.

To check,

f(a + t)− f(a)− (s− 4t)

|t|
=

2t2 − 2st+ st2

|t|
.

As noted before, |s| , |t| ≤ |t| so, by the triangle inequality,∣∣2t2 − 2st+ st2
∣∣ ≤ 2 |t|2 + 2 |s| |t|+ |s| |t|2

≤ 4 |t|2 + |t|3 .
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Therefore ∣∣∣∣2t2 − 2st+ st2

|t|

∣∣∣∣ ≤ 4 |t|+ |t|2 → 0

as t→ 0. Thus, by the Sandwich Rule,

lim
t→0

2t2 − 2st+ st2

|t|
= 0.

Hence f is Fréchet differentiable on R2 and dfa(t) = s−4t for t = (s, t)T .

�

We can repeat this, but for a general point a:

Example 2 continued Let f(x) = xy2 on R2. By verifying the definition

show that f is Fréchet differentiable at a ∈ R2 and the Fréchet derivative is

dfa(t) = β2s+ 2αβt,

if a = (α, β)T and t = (s, t)T .

Solution Problems Class Writing a = (α, β)T and t = (s, t)T think of the

upper case α and β as fixed while the lower case s, t vary (are the variables).

We have

f(a + t)− f(a) = f

((
α + s

β + t

))
− f

((
α

β

))
= β2s+ 2αβt+ αt2 + 2βst+ st2.

The ‘linear part’ of function of the variables s and t is β2s + 2αβt, so we

guess

dfa(t) = β2s+ 2αβt.

To check,

f(a + t)− f(a)−
(
β2s+ 2αβt

)
|t|

=
αt2 + 2βst+ st2

|t|
.

As noted before, |s| , |t| ≤ |t| and |α| , |β| ≤ |a| , so by the triangle inequality∣∣αt2 + 2βst+ st2
∣∣ ≤ |α| |t|2 + 2 |B| |s| |t|+ |s| |t|2

≤ 3 |a| |t|2 + |t|3 .
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Therefore ∣∣∣∣αt2 + 2βst+ st2

|t|

∣∣∣∣ ≤ 3 |a| |t|+ |t|2 → 0

as t→ 0. Thus, by the Sandwich Rule,

lim
t→0

αt2 + 2βst+ st2

|t|
= 0.

Hence f is differentiable on R2 and

dfa(t) = β2s+ 2αβt,

where a = (α, β)T and t = (s, t)T . �

In Example 4 the function xy2 in this example can be just one of the

coordinate functions of a vector valued function as in

Example 4 continued Let f : R2 → R2 be given by

f(x) =

(
xy2

x2y

)
,

for x ∈ R2. Show that f is Fréchet differentiable on R2 and find the deriva-

tive, dfa(t) for a ∈ R2.

Solution Question Sheet, but by Proposition 10 it suffices to show that each

scalar-valued component function is Fréchet differentiable on R2 and find

their Fréchet derivatives.

For f 1(x) = xy2 this was done in Example 2, so if a = (α, β)T and

t = (s, t)T then df 1
a (t) = β2s+ 2αβt.

For f 2(x) = x2y this is a question on the Problem Sheet with answer

df 2
a (t) = 2αβs+ α2t.

Since both f 1 and f 2 are Fréchet differentiable at a then so is f , with

Fréchet derivative

dfa(t) =

 df 1
a(t)

df 2
a(t)

 =

(
β2s+ 2αβt

2αβs+ α2t

)
.

�
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Example 12 For any k ∈ Rm, the constant function ck : Rn → Rm,

x 7→ k is Fréchet differentiable and d (ck)a = 0 for all a ∈ Rn.

Solution ck (a + t)− ck (a) = k− k = 0 and so L (t) = 0. �

The following is straightforward and will be used later. It says that all

linear functions are Fréchet differentiable. Thus the Fréchet derivative exists

and, being a linear function, there is an obvious candidate for what it should

be, namely the linear function you started with!

Example 13 All linear functions L : Rn → Rmare Fréchet differentiable on

Rn and dLa = L for all a ∈ Rn.

Solution Since L is linear, L(a + x)− L(a) = L(x). Hence, for x 6= 0,

L(a + x)− L(a)− dLa(x)

|x|
=

L(x)− dLa(x)

|x|
.

With the choice of dLa = L this is zero, and so the limit is zero. �
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2.4 Fréchet Differentiable implies Continuous

We have seen the following result in earlier courses on functions f : A ⊆ R→
R; if f is differentiable at a then it is continuous at a. The proof is almost

identical but I give it since it does require the fact that linear functions are

continuous at the origin.

Proposition 14 Suppose that f : U⊆Rn → Rm, where U is an open subset,

is Fréchet differentiable at a ∈ U , then f is continuous at a.

Proof Consider

lim
t→0

(
f(a + t)− f(a)− dfa (t)

)
= lim

t→0

f(a + t)− f(a)− dfa (t)

|t|
|t|

= lim
t→0

f(a + t)− f(a)− dfa (t)

|t|
lim
t→0
|t| ,

by the Product Rule for limits, allowable since both limits exist. Then

lim
t→0

(
f(a + t)− f(a)− dfa (t)

)
= 0× 0 = 0.

Yet, from Section 1 we have that the linear function dfa is everywhere

continuous so limt→0 dfa (t) = dfa (0) = 0. Hence

lim
t→0

(
f(a + t)− f(a)

)
= 0,

i.e. limt→0 f(a + t) = f(a), so f is continuous at a. �

The following will have been seen in any course on functions f : R → R
but is also true in our more general case and can never be said too often.

f Fréchet differentiable at a =⇒ f continuous at a

f continuous at a 6=⇒ f Fréchet differentiable at a
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2.5 Fréchet derivative exists implies directional deriva-

tive exists

The next result is important ; it says that if a function is Fréchet differentiable

at a point a then all the directional derivatives exist at that point. Further

the directional derivatives can be calculated by dvf(a) = dfa(v) for all unit

v.

Proposition 15 Suppose that f : U⊆Rn → Rm, where U is an open subset,

is Fréchet differentiable at a ∈ U . Then for all unit vectors v, the directional

derivatives dvf(a) exist and

dvf(a) = dfa(v) .

Proof From the assumption that f is Fréchet differentiable at a we have

that there exists a linear function dfa : Rn → Rm such that

lim
t→0

f(a + t)− f(a)− dfa(t)

|t|
= 0.

Then with t = tv, where v is a unit vector, (so |t| = |t| |v| = |t|), and the

fact that dfa is a linear function, we get

lim
t→0

f(a + tv)− f(a)− tdfa(v)

|t|
= 0.

As seen in the derivation of (2) above, because the limit is 0, this is

equivalent to

lim
t→0

f(a + tv)− f(a)− tdfa(v)

t
= 0,

i.e.

lim
t→0

f(a + tv)− f(a)

t
= dfa(v) .

This first tells us that the limit exists, i.e. dvf(a) exists. But further, it says

that dvf(a) = dfa (v). �

Important Note.

dfa exists =⇒ ∀ unit v ∈ Rn, dvf(a) exists

∀ unit v ∈ Rn, dvf(a) exists 6=⇒ dfa exists.
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Given this, it follows that by restricting to v = ei, the basis vectors, that

dfa exists =⇒ ∀i ∂f

∂xi
(a) exists

∀i ∂f

∂xi
(a) exists 6=⇒ dfa exists.

Before we look for conditions under which the converse of Proposition 15

holds we will examine the matrix associated with the Fréchet derivative, a

linear map.
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2.6 Jacobian Matrix

Recall, all linear functions L : Rn → Rm have a unique associated matrix

M ∈ Mm,n (R) such that L (t) = Mt for all t ∈ Rn. In fact, the columns of

M are L (ej) , 1≤j≤n.

So, if f : U ⊆Rn → Rm is Fréchet differentiable at a ∈ U then there is a

matrix associated with the Fréchet derivative dfa, called Jf(a). Thus

∀t ∈ Rn, dfa(t) = Jf(a) t.

That is,

dfa exists =⇒ ∀t ∈ Rn, dfa (t) = Jf(a) t

The columns of Jf(a) are dfa (ej). Yet, for a Fréchet differentiable func-

tion we have, from Proposition 15, that

dfa(ej) = dej f(a) = djf(a) .

Hence the j-th column of the matrix associated with f is the j-th partial

derivative of f at a.

This can be taken as a definition of a matrix for a function even when

the function is not Fréchet differentiable!

Definition 16 Assume that all the partial derivatives of f : U ⊆Rn → Rm

exist at a ∈ U . The Jacobian matrix of f at a is given by

Jf(a) =

 ↑ ↑ ↑ ↑
d1f(a) d2f(a) ... dnf(a)

↓ ↓ ↓ ↓

 ∈Mm,n (R) . (3)

Definition 17 If all partial derivatives of f : U⊆Rn → Rm exist at all points

of U we can look upon the Jacobian matrix as a function Jf : U → Mm,n,

a 7→ Jf(a), the Jacobian function.

Stress: As already noted, a function can have all partial derivatives at a

point without having a Fréchet derivative there. So the class of functions
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with a Jacobian matrix strictly contains the class of all Fréchet differentiable

functions.

Double stress: the most commonly seen error is that students incorrectly

give the transpose of the Jacobian matrix.

Aside The matrix (3) can be expanded as hh

Jf(a) =



d1f
1(a) d2f

1(a) d3f
1(a) · · · dnf

1(a)

d1f
2(a) d2f

2(a) d3f
2(a) dnf

2(a)

d1f
3(a) d2f

3(a)
...

...
...

d1f
m(a) d2f

m(a) · · · · · · dnf
m(a)



=



∂f1(a)/∂x1 ∂f1(a)/∂x2 ∂f1(a)/∂x3 · · · ∂f1(a)/∂xn

∂f2(a)/∂x1 ∂f2(a)/∂x2 ∂f2(a)/∂xn

∂f3(a)/∂x1
...

...
...

∂fm(a)/∂x1 ∂fm(a)/∂x2 · · · · · · ∂fm(a)/∂xn


(4)

Returning to an earlier example,

Example 4 Let f : R2 → R2 be given by

f(x) =

(
xy2

x2y

)
.

Then, since all partial derivatives exist,

Jf(x) =

(
∂(xy2)/∂x ∂(xy2)/∂y

∂(x2y)/∂x ∂(x2y)/∂y

)
=

(
y2 2xy

2xy x2

)
, (5)

for all x ∈ R2. �

We have, in fact, already seen this before where, in Example 4, we were

asked to show, by verifying the definition, that f is Fréchet differentiable on
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R2 and to find it’s Fréchet derivative. The result was that if a = (α, β)T ∈ R2

then dfa exists and

dfa(t) =

(
β2s+ 2αβt

2αβs+ α2t

)
=

(
β2 2αβ

2αβ α2

)
t, (6)

where t = (s, t)T . But recall that if dfa exists then dfa(t) = Jf(a) t. Hence

(6) gives

Jf(a) =

(
β2 2αβ

2αβ α2

)
,

which matches (5) with x = a.

2.7 Special Case: functions of one variable

If f : U⊆R→ Rm is a function of one variable, t, then the Jacobian matrix

is labelled f ′(t) instead of Jf(t). That is,

Jf(t) =


df 1(t) /dt

...

...

dfm(t) /dt

 = f ′(t) .

say.

2.8 Special Case: Scalar-valued functions and the Gra-

dient Vector

If f : U⊆Rn → R is a scalar-valued function then Jf(x) is a 1×n matrix

and the transpose is an n× 1 vector.

Definition 18 Assume f : U⊆Rn → R is a scalar-valued function defined

on an open set U , all of whose partial derivatives exist at a ∈ U . The

Gradient Vector of f at a is given by

∇f(a) =

(
∂f

∂x1
(a) ,

∂f

∂x2
(a) , · · · , ∂f

∂xn
(a)

)T
= Jf(a)T .

If the partial derivatives exist at all points of U then ∇f : U → R, a 7→
∇f(a) is the gradient function of f .
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Stress that the Gradient Vector is only defined for scalar-valued functions.

Then, for a Fréchet differentiable function f ,

dfa (t) = Jf(a) t = ∇f(a)T t = ∇f(a) • t.

Example Let f(x) = xy2 on R2. Then

∇f(x) =

(
y2

2xy

)
.

So, for a = (α, β)T and t = (s, t)T ,

∇f(a) • t =

(
β2

2αβ

)
•

(
s

t

)
= β2s+ 2αβt,

which had previously been seen in Example 2 as dfa (t). �

Stress, for scalar-valued Fréchet differentiable functions f : U⊆Rn → R we

have the important

∀t ∈ Rn, dfa(t) = ∇f(a) • t.

Aside Though the gradient vector can only exist for scalar-valued functions

the Jacobian matrix for vector-valued functions can be written in terms of

gradient vectors. Given a vector-valued function f : U⊆Rn → Rm then

f(a) =



f 1(a)

f 2(a)

f 3(a)
...

fm(a)


so Jf(a) =



Jf 1(a)

Jf 2(a)

Jf 3(a)
...

Jfm(a)


=



← ∇f 1(a)T →
← ∇f 2(a)T →
← ∇f 3(a)T →

...

← ∇fm(a)T →


.

This could have been seen directly from (4).
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2.9 *Use of the Jacobian matrix

Assume f : U ⊆Rn → Rm is Fréchet differentiable at a ∈ U. Then the Jaco-

bian matrix satisfies dfa (t) = Jf(a) t for all t ∈ Rn. But also, by Proposition

15, if v is a unit vector then dfa (v) = dvf(a). Combine these two facts to

get

f F-differentiable at a =⇒ ∀ unit v, dvf(a) = Jf(a) v. (7)

Interesting though this is, the contrapositive is very useful,

∃ unit v, dvf(a) 6= Jf(a) v =⇒ f not F-differentiable at a.

The argument can be repeated for scalar-valued functions f : U → R,

starting from dfa (t) = ∇f(a) • t. This give

f F-differentiable at a =⇒ ∀ unit v, dvf(a) = ∇f(a) • v.

Again the contrapositive is very useful,

∃ unit v, dvf(a) 6= ∇f(a) • v =⇒ f not F-differentiable at a.

It is interesting that we can say a function is not Fréchet differentiable

by looking at directional derivatives (remembering that Jf(a) and ∇f(a) are

defined in terms of partial derivatives, themselves directional derivatives).

Can we look at directional derivatives and deduce that a function is

Fréchet differentiable? We know that we need more than that the directional

derivatives exist, but what exactly? This is the subject of the section after

next. But first we look at a situation where the directional derivative arises

and it’s interpretation in terms of the gradient vector gives a ’nice’ result.
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2.10 What can the directional derivative represent?

For a scalar -valued function of two variables, f : U ⊆R2 → R, the graph of

f is the set

Gf =




x

y

f
(

(x, y)T
)
 :

(
x

y

)
∈ U

 =

{(
x

f(x)

)
: x ∈ U

}
.

As an example of the meaning of the directional derivative imagine you

are at a point p on the graph. What happens to your height as you move

from that point? Be aware that the direction of your travel away from p

is a vector v in R2 not R3 (just as when you are on a real mountain your

direction is given in terms of north and east; up or down is not given).

Example 19 In the special case of f : U⊆R2 → R, the directional derivative

dvf(q) for q ∈ U, represents the rate of change in the z-coordinate as you

move away, on the graph of f, from the point p =
(
qT , f(q)

)T
in the direction

v.

Verification If q ∈ U then p =
(
qT , f(q)

)T ∈ Gf . If we move from q to

q + tv ∈ U then the point p on the graph moves to p′ say. The change in

z-coordinates of p′ and p is f(q + tv) − f(q) and so the rate of change in

the z-coordinate is

lim
t→0

f(q + tv)− f(q)

t
= dvf (q) ,

if the limit exists. �

In other words, as you stand at the point on the graph lying above q ∈ U
and move from that point in the direction v then dvf(q) represents how fast

you ascend or descend.

Question In which directions is the quickest ascent and quickest descent?

If f is Fréchet differentiable then

dvf(q) = ∇f(q) • v = |∇f(q)| |v| cos θ
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where θ is the angle between the vectors ∇f(q) and v. Since −1 ≤ cos θ ≤ 1

we have

− |∇f(q)| |v| ≤ dvf(q) ≤ |∇f(q)| |v| .

Thus dvf(q) is maximal, i.e. we have quickest ascent, when cos θ = 1, i.e.

θ = 0. Hence maxv:|v|=1 dvf(a) = |∇f(q)|, with the maximum occurring at

v = ∇f(q) / |∇f(q)| .
Similarly, minv:|v|=1 dvf(a) = − |∇f(q)|, the quickest descent, with the

minimum occurring at v = −∇f(q) / |∇f(q)| .

2.11 When is a function Fréchet differentiable?

Recall

Proposition 10 Suppose that f : U⊆Rn → Rm is a function defined on an

open set U with component functions f i : U → R, 1 ≤ i ≤ m, and a ∈ U .

Then

dfa exists ⇐⇒ ∀ 1 ≤ i ≤ m, df ia exists.

Further

dfa exists =⇒ ∀ 1 ≤ i ≤ m, (dfa)i = df ia.

Hence we can restrict ourselves to scalar-valued functions for which we

have the following fundamental result.

Theorem 20 Suppose that f : U ⊆ Rn → R where U is an open set, is a

scalar-valued function such that all the partial derivatives djf : U → R exist

and are continuous on U (for 1≤j≤n). Then f is Fréchet differentiable

on U .

Proof Let a ∈ U be given. Since U is an open set there exists δ0 > 0 such

that the ball Bδ0(a) ⊆ U .

Let ε > 0 be given. Let 1≤ j ≤ n be given. Then the assumption that

∂f/∂xj is continuous at a means there exists δj > 0 such that

|x− a| < δi =⇒
∣∣∣∣ ∂f∂xj (x)− ∂f

∂xj
(a)

∣∣∣∣ < ε

n
. (8)
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Let δ = min
0≤j≤n

δj. Let t ∈ Rn satisfy |t| < δ. We wish to consider f(a + t)−
f(a) .

1) We produce a piece-wise straight path from a to a + t where every part of

the path is parallel to some axis. For example going from (1, 2, 3) to (5, 4, 2)

in R3 we might go from (1, 2, 3) to (5, 2, 3) to (5, 4, 3) to (5, 4, 2).

In general the path will be



a1

a2

a3

a4

.

.

.

.

.

.

an


→



a1 + t1

a2

a3

a4

.

.

.

.

.

.

an


→



a1 + t1

a2 + t2

a3

a4

.

.

.

.

.

.

an


→



a1 + t1

a2 + t2

a3 + t3

a4

.

.

.

.

.

.

an


→ · · · →



a1 + t1

a2 + t2

a3 + t3

a4 + t4

.

.

.

an−1 + tn−1

an


→



a1 + t1

a2 + t2

a3 + t3

a4 + t4

.

.

.

an−1 + tn−1

an + tn


.

This can be written as

b0 → b1 → b2 → ...→ bn−1 → bn

where b0 = a, bj−bj−1 = tjej for some tj 6= 0 and bn = a + t. thus the j-th

part of this path, from bj−1 to bj, is parallel to the j-th basis vector ej.

In this way we can write

f(a + t)− f(a) = f(bn)− f(b0)

=
(
f(bn)− f(bn−1)

)
+
(
f(bn−1)− f(bn−2)

)
+ ...

...+
(
f(b2)− f(b1)

)
+
(
f(b1)− f(b0)

)
=

n∑
j=1

(
f(bj)− f(bj−1)

)
. (9)

2) We now apply the Mean Value Theorem to f on the straight line joining

the points bj−1 and bj. The derivative will be in the direction of bj − bj−1,

i.e. ej. A derivative in the direction of a standard basis vector i.e. a partial

derivative.

We have seen that the difference between bj−1 and bj is tjej so the

straight line joining the points bj−1 and bj is bj−1+sej, where s is a variable

0 ≤ s ≤ tj (though tj maybe negative in which case tj ≤ s ≤ 0).
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Define a function

φ : R→ R, φ (s) = f(bj−1 + s ej) ,

so

f(bj)− f(bj−1) = φ
(
tj
)
− φ (0) . (10)

Yet φ is a real-valued function of one variable and we would like to apply

results from Real Analysis, in particular the Mean Value Theorem. For this

we need to know that φ is differentiable. Let s : bj−1 +s ej ∈ U and consider

lim
h→0

φ (s+ h)− φ (s)

h
= lim

h→0

f(bj−1 + (s+ h) ej)− f(bj−1 + s ej)

h

= lim
h→0

f((bj−1 + s ej) + hej)− f(bj−1 + s ej)

h
.

This is the definition of the directional derivative of f at bj−1 + sej in the

direction ej, which is the partial derivative w.r.t. xj. This exists, by assump-

tion, for all s : bj−1 + s ej ∈ U and thus φ is differentiable at s with

φ′ (s) =
∂f

∂xj
(bj−1 + s ej) . (11)

The set of s such that bj−1 + s ej ∈ U is an open interval containing the

closed interval [0, tj]. Since differentiable implies continuous we deduce that

φ is continuous on [0, tj] and differentiable on (0, tj) . Thus we can apply the

Mean Value Theorem to φ on [0, tj] to deduce that

φ
(
tj
)
− φ (0) = φ′

(
cj
) (
tj − 0

)
,

for some cj between 0 and tj (I did not say tj was positive). Thus, by (11),

φ
(
tj
)
− φ (0) = φ′

(
cj
)
tj =

∂f

∂xj
(wj) t

j, (12)

where wj = bj−1 + cjej. Think of wj as a point on the straight line joining

bj−1 with bj.

Then (9) , (10) and (12) combine as

f(a + t)− f(a) =
n∑
j=1

tj
∂f

∂xj
(wj) . (13)
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3) Next we use the fact that the djf are all continuous at a. We use this is

the form (8), which requires showing that |wj − a| < δ for all 1 ≤ j ≤ n.

But wj − a = bj−1 + cjej − a which equals


a1 + t1

a2 + t2

.

.

.

aj−1 + tj−1

aj

aj+1

.

.

.

an



+



0

0

.

.

.

0

cj

0

.

.

.

0



−



a1

a2

.

.

.

aj−1

aj

aj+1

.

.

.

an



=



t1

t2

.

.

.

tj−1

cj

0

.

.

.

0



.

So

|wj − a|2 =

j−1∑
k=1

(
tk
)2

+
(
cj
)2 ≤ j∑

k=1

(
tk
)2

since
∣∣cj∣∣ ≤ ∣∣tj∣∣

≤
n∑
k=1

(
tk
)2

= |t|2 .

Yet early on we assumed |t| < δ therefore |wj − a| ≤ |t| < δ. Hence, by

(8), ∣∣∣∣ ∂f∂xj (wj)−
∂f

∂xj
(a)

∣∣∣∣ < ε

n
. (14)

Thus, by (13), we get∣∣∣∣∣f(a + t)− f(a)−
n∑
j=1

tj
∂f

∂xj
(a)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

tj
(
∂f

∂xj
(wj)−

∂f

∂xj
(a)

)∣∣∣∣∣
≤ ε

n

n∑
j=1

∣∣tj∣∣ by (14)

≤ ε

n
(n |t|) = ε |t| .

With the linear function

L(t) =
n∑
j=1

tj
∂f

∂xj
(a) (15)
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we therefore have, for |t| < δ,∣∣∣∣f(a + t)− f(a)− L(t)

|t|

∣∣∣∣ < ε.

Thus we have verified the definition of

lim
t→0

f(a + t)− f(a)− L(t)

|t|
= 0.

Hence we have verified the definition that f is Fréchet differentiable at a.

Yet a ∈ U was arbitrary so f is Fréchet differentiable on U . �

Aside The proof also gives us that

dfa(t) = L(t) =
n∑
j=1

tj
∂f

∂xj
(a) from (15)

= ∇f(a) • t.

But this was already known to follow from f Fréchet differentiable.

For vector-valued functions we have

Corollary 21 Suppose that f : U ⊆ Rn → Rm, where U is an open set, is

a function such that all the partial derivatives djf : U → Rm exist and are

continuous on U (for 1 ≤ j ≤ n). Then f is Fréchet differentiable on U .

Proof Not given The assumption of the corollary is that for all 1 ≤ j ≤ n

the djf are continuous. The fact that a vector-valued function is continuous

iff all the component functions are continuous justifies the first implication
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in

∀1≤j≤n, djf is continuous ⇐⇒ ∀1≤j≤n, ∀1≤ i≤ m, (djf)i is continuous

⇐⇒ ∀1≤j≤n, ∀1≤ i≤m, djf
i is continuous

⇐⇒ ∀1≤ i≤m, ∀1≤j≤n, djf
i is continuous,

on interchanging the quantifiers

⇐⇒ ∀1≤ i≤m, f i is Fréchet differentiable,

by Theorem 20,

⇐⇒ f is Fréchet differentiable,

by Proposition 10. �

Definition 22 If f : U ⊆Rn → Rm, where U is an open set, is continuous

on U we say that f is a function of class C0.
If the partial derivatives djf(x) 1 ≤ j ≤ n exist for all x ∈ U and are

continuous functions on U then f is a function of class C1.

The result of Corollary 21 can be rephrased; if a function is of class C1

then it is a Fréchet differentiable function, i.e.

f is C1 =⇒ f is Fréchet differentiable.

Stress The converse is false, there exist Fréchet differentiable functions that

are not C1. So

f is Fréchet differentiable 6=⇒ f is C1.

See the Appendix for an example.
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2.12 Examples

Given f : U ⊆ Rn → Rm

• Calculate the Jacobian matrix,

• Check that all entries are continuous on U ,

• If they are, f is Fréchet differentiable on U and dfa(t) = Jf(a) t.

We have seen the first example numerous times previously, but you can

now see how the use of Theorem 20 is far quicker than the verification of the

definition.

Example 4 continued Let f : R2 → R2 be given by

f(x) =

(
xy2

x2y

)
,

for x ∈ R2. Show that f is Fréchet differentiable on R2 and find the deriva-

tive, dfa(t) for a ∈ R2.

Solution The Jacobian matrix of f at x ∈ R2 is

Jf(x) =

(
∂f 1(x)/∂x ∂f 1(x)/∂y

∂f 2(x)/∂x ∂f 2(x)/∂y

)
=

(
y2 2xy

2xy x2

)
.

All entries are polynomials and thus continuous on R2. Hence f is a C1-

function and thus Fréchet differentiable on R2. Further, with a = (α, β)T ,

dfa(t) = Jf(a) t =

(
β2 2αβ

2αβ α2

)
t =

(
β2s+ 2αβt

2αβs+ α2t

)

for all t = (s, t)T , agreeing with earlier results. �

Example 23 Let f : R2 → R2 be the function

f(x) =

(
cos (xy2)

sin (x2y)

)
.

Show that f is Fréchet differentiable on R3 and find Jf(x).
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Solution The Jacobian matrix of f at x = (x, y)T ∈ R2 is

Jf(x) =
(
d1f(x) d2f(x)

)
=

(
−y2 sin (xy2) −2xy sin (xy2)

2xy cos (x2y) x2 cos (x2y)

)
.

All these four functions are continuous on R3. Hence, by Corollary 21, f is

Fréchet differentiable on R3. �

Aside (Not in lectures) Continuing with the example, if x1 = (π, 1)T we get

the Jacobian matrix

Jf(x1) =

(
0 0

2π cos (π2) π2 cos (π2)

)
.

If x2 = (1, 1)T then

Jf(x2) =

(
− sin 1 − sin 1

2 cos 1 cos 1

)
.

A difference between Jf(x1) and Jf(x2) is that the former matrix has

rank 1 (the number of independent rows or columns) whereas the second has

rank 2 (and in fact is full rank since it cannot have more than 2 independent

rows). The rank of the Jacobian matrix will be seen to be important later.

I have gone over the following example in the tutorials; it is an extended

version of a question on Sheet 3.

Example 24 Let

f(x) =
x2y

x2 + y2

for x 6= 0, with f(0) = 0.

i. Prove that f is continuous at 0

ii. Calculate
∂f

∂x
(0) and

∂f

∂y
(0).

Further, calculate
∂f

∂x
(x) and

∂f

∂y
(x)
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for x 6= 0. Are the partial derivatives continuous at 0, i.e. is f a C1-function

at 0?

iii. Calculate dvf(0) for any vector v 6= 0.

iv. Is f Fréchet differentiable at 0?

Solution i. The function f is continuous at 0 if limx→0 f(x) = f(0) = 0.

We prove this using the Sandwich Rule.

|f(x)| =
∣∣∣∣ x2y

x2 + y2

∣∣∣∣ ≤ |x|2|y||x|2
≤ |x|

2|x|
|x|2

= |x| → 0

as x→ 0. Hence f(x)→ 0 and so f is continuous at 0.

ii. By definition

∂f

∂x
(0) = de1f(0) = lim

t→0

f(0 + te1)− f(0)

t

= lim
t→0

1

t
f

((
t

0

))
= lim

t→0

t2 × 0

t(t2 + 02)
= 0.

Similarly
∂f

∂y
(0) = 0.

For x 6= 0 there is no need to go back to the definition but simply apply

partial differentiation to get

∂f

∂x
(x) =

2xy3

(x2 + y2)2
and

∂f

∂y
(x) =

x4 − x2y2

(x2 + y2)2
.

Are these continuous at 0? We will only look at ∂f/∂x. So is

lim
x→0

∂f

∂x
(x) =

∂f

∂x
(0),

i.e.

lim
x→0

2xy3

(x2 + y2)2
= 0?
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My guess would be no; in the rational function the total powers on the

top are 4, (3+1), and on the bottom also 4, (2×2). For convergence I would

expect to see higher powers on the top. Believing the limit to not exist we

look at different directional limits. First along the x-axis,

lim
t→0+

∂f

∂x
(te1) = 0.

But along y = x, i.e. v = (1, 1)T /
√

2, we find

lim
t→0+

∂f

∂x
(tv) = 1.

Hence the partial derivative is not continuous at 0 and so f is not a C1-
function at 0.

iii. I leave it to the student to check that for non-zero v = (u, v)T ∈ R2, we

have

dvf(0) =
u2v

u2 + v2
.

iv. Assume f Fréchet differentiable at 0. This means the Fréchet derivative

gives us the directional derivative,

df0f(v) = dvf(0).

Yet the Fréchet derivative is given by the gradient vector, so for all non-

zero v ∈ R2,

df0(v) = ∇f(0) • v =

(
∂f/∂x(0)

∂f/∂y(0)

)
• v

=

(
0

0

)
• v = 0,

having used the results of Part ii. Combine we deduce dvf(0) = 0 for all

non-zero v ∈ R2. Yet, if we choose v = (1, 1)T/
√

2 in Part iii, we see

that dvf(0) = 1/23/2 6= 0. This contradiction means that f is not Fréchet

differentiable at 0. �
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2.13 Product and Quotient functions

Example 25 Let t = (s, t)T ∈ R2.

i. The product function p : R2 → R, (x, y)T 7→ xy is Fréchet differentiable on

R2 with

∇p(k) =

(
`

k

)
and dpk(t) =

(
`

k

)
• t = `s+ kt,

for any k = (k, `)T ∈ R2.

ii. The quotient function q : R × R†, (x, y)T 7→ x/y is Fréchet differentiable

on R× R† with

∇q(k) =
1

`2

(
`

−k

)
and dqk(t) =

1

`2

(
`

−k

)
• t =

`s− kt
`2

,

for any k = (k, `)T ∈ R× R†.

We have previously shown that p and q are everywhere continuous.

Proof i. The Gradient vector of p at x = (x, y)T ∈ R2 is

∇p(x) =

(
∂p(x)/∂x

∂p(x)/∂y

)
=

(
y

x

)
.

The component functions are both polynomials and thus continuous on all

of R2. Hence p is C1 and so, by Theorem 20, is Fréchet differentiable on R2.

Then, for all k = (k, `)T ∈ R2,

dpk(t) = ∇p(k) • t =

(
`

k

)
•

(
s

t

)
= `s+ kt,

for all t = (s, t)T ∈ R2.

ii. The Gradient vector of q at x = (x, y)T ∈ R× R† is

∇q(x) =

(
∂q(x)/∂x

∂q(x)/∂y

)
=

(
1/y

−x/y2

)
.
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The component functions are both rational functions and continuous wher-

ever they are defined, i.e. on all of R×R†. Hence q is C1 and so, by Theorem

20, is Fréchet differentiable on R× R†. Then, for all k = (k, `)T ∈ R× R†,

dpk(t) = ∇p(k) • t =

(
1/`

−k/`2

)
•

(
s

t

)
=
`s− kt
`2

,

for all t = (s, t)T ∈ R2. �

Exercise for student: prove these results by verifying the definition of

Fréchet differentiable. You will see how much easier it is to simply show that

the given function was C1.

2.14 The Chain Rule

The next important situation we examine is a chain of functions

Rp g→ Rn f→ Rm.

We have previously stated that if g is continuous at a ∈ Rp and f is

continuous at b = g (a) ∈ Rn then the composite f ◦ g is continuous at a.

we now see that we can replace ‘is continuous’ by ‘is Fréchet differentiable’.

Theorem 26 Chain Rule Suppose that g : V ⊆ Rp → Rn is a function

defined on an open set V and f : U ⊆Rn → Rm is a function defined on an

open set U containing the image of g, i.e. g (V ) ⊆ U .

If g is Fréchet differentiable at a ∈ V and f is Fréchet differentiable at

b = g (a) ∈ U then the composite f ◦ g : V → Rm is Fréchet differentiable at

a and

d (f ◦ g)a = dfb ◦ dga,

both sides linear functions from Rp to Rm.

Proof not given. No new ideas over those seen in the case of scalar-valued

functions of one variable, though there is an increase in detail. See Appendix.

�
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A very useful form of the Chain Rule is the following,

Corollary 27 Given the assumptions of the Chain Rule, the Jacobian ma-

trices satisfy

J(f ◦ g) (a) = Jf(b) Jg(a) .

Proof The Jacobian matrix is the matrix associated with the linear map

d (f ◦ g)a so, for any t ∈ Rp we have

J(f ◦ g) (a) t = d (f ◦ g)a (t)

= (dfb ◦ dga) (t) by the Chain Rule

= dfb (dga (t)) by definition of convolution

= Jf(b) dga (t) since Jf(b) is associated with dfb

= Jf(b) Jg(a) t since Jg(b) is associated with dgb.

True for all t ∈ Rp means J (f ◦ g) (a) = Jf(b) Jg(a). �

2.15 Chain Rule, special case

There are two special cases, p = 1 and m = 1.

If p = 1 then g and f ◦ g are functions of one variable, so

R g→ Rn f→ Rm.

Recall that, for a function of one variable, we write Jg(t) = g′ (t) and so,

similarly, J (f ◦ g)(t) = (f ◦ g)′ (t). Thus the Chain Rule reads

(f ◦ g)′ (t) = Jf(g(t)) g′ (t) . (16)

If m = 1 then f and f ◦ g are scalar-valued. Think of the coordinates

in Rp as xi for 1 ≤ i ≤ p, while in Rn they will be yj for 1≤j≤n. Then the

Chain Rule can be written in a way you might well have seen before,

∂f ◦ g

∂xi
(a) =

n∑
k=1

∂f

∂yk
(b)

∂gk

∂xi
(a) ,
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for 1 ≤ i ≤ p. See Problem Sheet 5, but it follows from J (f◦g) (a) =

Jf(b) Jg(a) in the form

(
∂(f◦g)(a)

∂x1
· · · ∂(f◦g)(a)

∂xi
· · · ∂(f◦g)(a)

∂xp

)
︸ ︷︷ ︸

i-th term

=
(

∂f(b)
∂y1

· · · · · · ∂f(b)
∂yn

)
↑
|
|
↓


︸ ︷︷ ︸

ith column

.

Aside 1 If m = p = 1, so R g→ Rn f→ R, then

(f ◦ g)′ (t) = ∇f(g(t)) • g′ (t) .

Aside 2 The case p = 1 was seen earlier when looking at the limits of f

along a curve g.

2.16 Rules for Differentiation

The following result can be proved by checking that the expressions given

for the Fréchet derivatives satisfy the definition for the Fréchet derivatives of

sums, products and quotients. Instead we will use the method employed to

proved the Rules for Continuity, the Chain Rule.

Theorem 28 Suppose that f, g : U⊆Rn → R, for an open set U, are Fréchet

differentiable at a ∈ U.

a) For any α, β ∈ R the sum αf + βg is Fréchet differentiable at a and

d (αf + βg)a = αdfa + βdga.

b) The product fg is Fréchet differentiable at a and

d (fg)a = g(a) dfa + f(a) dga.

c) The quotient f/g is Fréchet differentiable at a and

d

(
f

g

)
a

=
g(a) dfa − f(a) dga

g(a)2
,

provided that g(a) 6= 0.
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Proof To prove equality of linear maps it suffices to prove equality of asso-

ciated matrices.

J(αf + βg) (a) = αJf(a) + βJg(a) ,

J(fg) (a) = g(a) Jf(a) + f(a) Jg(a) ,

J(f/g) (a) = (g(a) Jf(a)− f(a) Jg(a)) /g(a)2 .

The first is left to student.

For the latter two define F : U⊆Rn → R2 by

F(x) =

(
f(x)

g(x)

)
∈ R2 (17)

for all x ∈ U . Then fg = p ◦ F where p (x) = xy and f/g = q ◦ F where

q (x) = x/y provided y 6= 0.

The component functions of F are, by assumption, Fréchet differentiable

at a and thus F (x) is Fréchet differentiable with derivative

JF (x) =

(
Jf(x)

Jg(x)

)
. (18)

The Chain Rule gives

J(fg) (a) = J(p ◦ F) (a) = J(p (F (a))) JF(a) ,

J(f/g) (a) = J(q ◦ F) (a) = J(q (F (a))) JF(a) .

From Example 25 we have

J(p (x)) = (y, x) so J(p (F (a))) = (g(a) , f(a))

J(q (x)) = (y,−x) /y2 so J(q (F (a))) = (g(a) ,− f(a)) /g2(a) .

Thus, for the product,

J(fg) (a) = J(p (F)) JF(a) = (g(a) , f(a))

(
Jf(a)

Jg(a)

)
= g(a) Jf(a) + f(a) Jg(a) ,
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and, for the quotient,

J(f/g) (a) = J(q (F)) JF(a) =
1

g2(a)
(g(a) ,−f(a))

(
Jf(a)

Jg(a)

)

= (g(a) Jf(a)− f(a) Jg(a)) /g(a)2 .

�

We have previously seen the idea of introducing F in the proof of the

limit laws for products and quotients of scalar-valued function.

2.17 *Inverse Function

Not given in lectures, though we will later come back to inverse functions.

Question what can be said if a Fréchet differentiable function f : U⊆Rn →
Rm has a Fréchet differentiable inverse?

Assume that f : U ⊆ Rn → Rm has an inverse g : V ⊆ Rm → Rn and

f (U)⊆ V . Since g is the inverse of f then g ◦ f is the identity map 1U on

U . Yet 1U is a linear map so d (1U)a = 1n, the identity map on Rn and thus

J1U (a) = In, the identity matrix.

Also, since g is the inverse of f then f ◦ g is the identity map 1V on V .

For this we similarly have d (1V )a = 1m and J1V (a) = Im.

Corollary 29 Suppose that f : U → V is a differentiable bijection with

differentiable inverse g : V → U where U is non-empty and open in Rn and

V is non-empty and open in Rm. Let a ∈ U with f (a) = b ∈ V . Then

a) dfa : Rn → Rm is an isomorphism (with inverse dgb);

b) the Jacobian matrix Jf (a) is non-singular with inverse Jg (b) ;

c) m = n.

Proof a) Since g is the inverse of f , then g ◦ f = 1U : U → U and f ◦ g =

1V : V → V . Hence by the Chain Rule,

dgb ◦ dfa = d (1U)a = 1n : Rn → Rn
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and similarly

dfa ◦ dgb = d (1V )b = 1m : Rm → Rm.

That dgb is an inverse on both sides implies dfa has an inverse in which case

it is an isomorphism.

b) The Chain Rule, written in matrix form, gives

Jg(b) Jf(a) = J (g ◦ f) (a) = J1U (a) = In.

Similarly Jf(a) Jg(b) = Im. That Jg(b) is an inverse on both sides implies

Jf(a) has an inverse in which case it must be non-singular.

c) The equality m = n follows from either a) or b). For example, the matrix

Jf(a) can only be non-singular if it is square, i.e. m = n. �

This result is weak, it is possible to replace Fréchet differentiable by con-

tinuous; Suppose that f : U → V is a continuous bijection with continuous

inverse g : V → U where U is non-empty and open in Rn and V is non-empty

and open in Rm. Then m = n.

Finally, though it is of interest to know what happens if a Fréchet differen-

tiable function has a Fréchet differentiable inverse, the fundamental question

must be when exactly does a Fréchet differentiable function have a Fréchet

differentiable inverse?

This question is the subject of the next two chapters.
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Appendix for Section 2

1. Partial and Directional Derivatives

It was claimed in the lectures that a function having all partial derivatives

at a point is not sufficient to ensure the function has a directional derivative

there in all directions.

Example 30 Define f : R2 → R by f(0) = 0 and, for x = (x, y)T 6= 0,

f(x) =
xy

x3 + y3
.

Show that the partial derivatives djf(a) exist for all i = 1, 2 and yet dvf(a)

does not exist for v = (1, 1)T /
√

2.

Solution For either i = 1 or 2 one coordinate of tei is zero and so f (tei) = 0.

Thus

dif(0) = lim
t→0

f(0 + tei)− f(0)

t
= lim

t→0
0 = 0.

Let v = (1, 1)T /
√

2 when

f(tv) =
t2√
2t3

=
1√
2t
.

Thus

dvf(0) = lim
t→0

f(0 + tv)− f(0)

t
= lim

t→0

1√
2t2

which does not exist. �

2. Directional derivative implies directional continuity

However and in whatever situation derivatives are defined we should look

for a result that says that if a function is differentiable then it is continuous.

Lemma 31 Suppose that f : U ⊆ Rn → Rm is a function defined on an

open set U and a ∈ U . If dvf (a) exists then limt→0 f (a + vt) = f (a).

Proof

f(a + vt)− f(a) =
f(a + vt)− f(a)

t
×t.
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Then

lim
t→0

(f(a + vt)− f(a)) = lim
t→0

(
f(a + vt)− f(a)

t
×t
)

= lim
t→0

f(a + vt)− f(a)

t
lim
t→0

t,

by the Product Rule for limits. This is allowable since both limits on the

RHS exist, the first because the limit is dvf (a) which we are assuming exists.

Thus

lim
t→0

(f(a + vt)− f(a)) = dvf(a)× 0 = 0.

3. Fréchet derivative is Unique

The following was not proved in lectures due to lack of time.

Theorem 9 If the Fréchet derivative exists it is unique.

Proof Assume for contradiction that there exists a function f : U ⊆ Rn →
Rm, U an open subset, and a point a ∈ U , at which f has two Fréchet

derivatives, linear maps L1 and L2 : Rn → Rm. Then

lim
t→0

f(a + t)− f(a)− L1(t)

|t|
= 0 and lim

t→0

f(a + t)− f(a)− L2(t)

|t|
= 0.

Consider

L1(t)− L2(t)

|t|
=

L1(t)− (f(a + t)− f(a))− L2(t) + (f(a + t)− f(a))

|t|

= −f(a + t)− f(a)− L1(t)

|t|
+

f(a + t)− f(a)− L2(t)

|t|

→ 0

as t→ 0.

Define L(t) = L1(t)−L2(t), a linear function. Then with t = tej for any

1 ≤ j ≤ n we see that

L(t)

|t|
=

L(tej)

|tej|
=

t

|t|
L(ej) = ±L(ej) .
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This can only → 0 as t → 0 if L(ej) = 0, i.e. L1(ej) − L2(ej) = 0. Hence

L1(ej) = L2(ej) for all 1 ≤ j ≤ n. Therefore, for any x ∈ Rn,

L1(x) = L1

(
n∑
j=1

xjej

)
=

n∑
j=1

xjL1(ej)

=
n∑
j=1

xjL2(ej)

= L2

(
n∑
j=1

xjej

)
= L2(x) .

Hence L1 = L2. �

4. Theorem 20 and the Mean Value Theorem

What makes this proof of Theorem 20 long and difficult? Perhaps its

the proof of (13)? Instead of a number of applications of the Mean Value

Theorem could we not have just one?

In all the following results U is an open set in Rn, such that if x,y ∈ U
then the straight line between x and y also lies in U . This is the definition

that U is a convex set.

Theorem 32 Assume f is a scalar-valued Fréchet differentiable function,

f : U ⊆ Rn → R, where U is an open convex subset. Given distinct points

x,y ∈ U there exists w, a point on the line between x and y, such that

f(y)− f (x) = dfw (y − x) .

Also

f(y)− f(x) = ∇f(w) • (y − x) =
n∑
i=1

∂f(w)

∂xi
(
yi − xi

)
. (19)

Proof Define ψ(s) = f(x + s (y − x)), so ψ(0) = f(x) and ψ(1) = f(y).

Since f is Fréchet differentiable it is continuous and thus ψ (s) is too. We

need show it is differentiable w.r.t s (by the definition of last semester fro
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functions of one variable). To this end assume 0 < s < 1. Then

lim
h→0

ψ(s+ h)− ψ(s)

h
= lim

h→0

f
(
x + (s+ h) (y − x)

)
− f

(
x + s (y − x)

)
h

= lim
h→0

f
(
w + h (y − x)

)
− f(w)

h
,

say, where w = x + s (y − x) = (1− s) x + sy. This is almost a directional

derivative but y − x is not a unit vector. Let v = (y − x) / |y − x| be the

unit vector and replace h by η = |y − x|h, which also tends to 0 as h → 0.

Then

lim
h→0

ψ(s+ h)− ψ(s)

h
= |y − x| lim

η→0

f(w + ηv)− f(w)

η
= |y − x| dvf(w) ,

where the limit exists since f is Fréchet differentiable. Thus ψ′(s) exists for

all 0 < s < 1 and satisfies

ψ′(s) = |y − x| dvf(w) = |y − x| ∇f(w) • v = ∇f(w) • (y − x) . (20)

We can now apply the Mean Value Theorem for scalar-valued functions

of one-variable to ψ(s) on [0, 1] and find c : 0 < c < 1 and

f(y)− f(x) = ψ(1)− ψ(0) = ψ′(c)

= ∇f(w) • (y − x)

by (20), where now w = x + c (y − x). �

The conclusion in (19) can be compared with (13) and would appear to

be stronger, with only one unknown, w, instead of n unknowns, wi. UN-

FORTUNATELY, to prove (19) we need to assume that f is differentiable,

whereas (13) is used to prove that f is differentiable.

5. Fréchet differentiable does not imply C1.

In the lectures we showed that “f is C1 ⇒ f is Fréchet differentiable” and

stated that the converse is not true. Here we give an example of a function

that is Fréchet differentiable at a point yet whose partial derivatives exist

but are not continuous at that point.
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Recall that if f : R→ R is differentiable (in the sense from last Semester)

then it is Fréchet differentiable with dfa(t) = f ′(a) t. So we need only find

an example of a function differentiable at some point a for which f ′ is not

continuous at a. An example can be constructed from the fact that neither

lim
x→0

sin

(
1

x

)
nor lim

x→0
cos

(
1

x

)

exist. The proof is by contradiction, we can find a sequence xn → 0 as

n → ∞ for which sin (1/xn) = 1 and another sequence yn → 0 for which

sin (yn) = −1. Thus any limit value would have to lie close to both 1 and

−1, an impossibility.

Example 33 Let f : R→ R be given by

f(x) =

 x2 sin

(
1

x

)
if x 6= 0

0 if x = 0.

Then f is differentiable on R yet f ′ is not continuous at x = 0.

Solution If x 6= 0 we can simply use the rules of differentiation to see that

for such x

f ′ (x) = 2x sin

(
1

x

)
− cos

(
1

x

)
. (21)

When x = 0 return to the definition of the derivative as a limit. So

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0
x sin

(
1

x

)
.

We cannot use the Product Rule on this since limx→0 sin (1/x) does not

exist. Instead use the Sandwich Rule:∣∣∣∣x sin

(
1

x

)∣∣∣∣ ≤ |x| → 0

as x→ 0. Hence limx→0 x sin (1/x) = 0.

Thus

f ′(x) =

{
2x sin (1/x)− cos (1/x) if x 6= 0

0 if x = 0.
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The derivative is continuous at 0 iff limx→0 f
′(x) = f ′(0). Yet limx→0 f

′(x)

does not exist since limx→0 cos (1/x). Hence f ′ is not continuous at x = 0.�

You may be disappointed that this is not an example of a function of

several variables. Perhaps try f : R2 → R given by

f(x) =

{
|x|2 sin

(
1
|x|

)
if x 6= 0

0 if x = 0.

If x = (x, y)T then
∂

∂x
|x| = x

|x|
.

for x 6= 0. For such x,

∂

∂x
f(x) = 2x sin

(
1

|x|

)
− x

|x|
cos

(
1

|x|

)
.

To see if this is continuous at x = 0 look at the directional limit at 0 in

the directions e1 = (1, 0)T . For t > 0,

∂

∂x
f(x) = 2t sin

(
1

|te1|

)
− t

|te1|
cos

(
1

|te1|

)

= 2t sin

(
1

t

)
− cos

(
1

t

)
This is the same as (21) and, as there, has no limit as t→ 0+. Thus f is

not continuous at the origin.

You may be disappointed that this is not an example of a vector-

valued function. But, for example, take f : R2 → R of the last example and

define f̂ : R2 → Rm by f̂ 1 = f , f̂ i = 0 for all 2≤ i≤m.

6. Example 25 revisited

The following proof by verification of a definition was left to the student.

Example 25 Let q : R× R† → R,

q

((
x

y

))
=
x

y
.
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Show, by verifying the definition, that q is Fréchet differentiable on R× R†

and find dqk (t) for all k ∈ R× R†, t ∈ R2.

Solution For k = (k, `)T with ` 6= 0, and t = (s, t)T ∈ R2,

q (k + t)− q (k) =
k + s

`+ t
− k

`
=

`s− kt
` (`+ t)

.

It might be difficult to guess the linear approximation to this rational

function but think of t and thus both s and t as small. Then 1/` is the first

order approximation to 1/(`+ t) and so we might guess the correct linear

function of s and t is

Lk(t) =
`s− kt
`2

.

Then, with the given Lk (t),

q (k + t)− q (k)− Lk(t)

|t|
=

1

|t|

(
`s− kt
` (`+ t)

− `s− kt
`2

)

= −`s− kt
|t|

t

`2 (`+ t)
.

Since we will be letting t→ 0 first demand |t| ≤ |`| /2. For then, by the

triangle inequality and the fact that |t| ≤ |t|,

|`+ t| ≥ |`| − |t| ≥ |`| − |t| ≥ |`| − |`| /2 = |`| /2.

Thus ∣∣∣∣`s− kt|t|
t

`2 (`+ t)

∣∣∣∣ ≤ 2 |`s− kt| |t|
|`|3 |t|

≤ 2 (|`| |s|+ |k| |t|) |t|
|`|3 |t|

.

To continue, use |s| , |t| ≤ |t| , so∣∣∣∣−`s− kt|t|
t

`2 (`+ t)

∣∣∣∣ ≤ 2 (|`|+ |k|)
|`|3

|t| → 0

as t→ 0. So again q is Fréchet differentiable at a with dqk (t) = Lk(t). �
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7. Rules of Differentiation

The following are parts of Theorem 28.

i) If f, g : U ⊆Rn → R are Fréchet differentiable at a ∈ U then so is the

product fg and

d (fg)a = g(a) dfa + f(a) dga.

ii) If f, g : U ⊆Rn → R are Fréchet differentiable at a ∈ U and g (a) 6= 0,

then the quotient f/g is differentiable and

d (f/g)a =
g(a) dfa − f(a) dga

g(a)2
.

In lectures we gave proofs based on the Chain Rule. Here we give di-

rect proofs but we first state a result from Section 1 for scalar-valued linear

functions.

Lemma 34 If L : Rn → R is a linear map then there exists a positive

constant C (depending on L) such that |L (t)| ≤ C |t| for all t ∈ Rn.

Thus, given f, g : U⊆Rn → R Fréchet differentiable at a ∈ U there exist

constants cf and cg (depending also on a) such that |dfa (u)| ≤ cf |u| and

|dfa (u)| ≤ cf |u| for all u ∈ U .

Proof i With a, a + t ∈ U consider

R(t) = f(a + t) g(a + t)− f(a) g(a)−
(
g(a) dfa(t) + f(a) dga(t)

)
. (22)

To show d (fg)a = g (a) dfa+f(a) dga it suffices to show that R (t) / |t| →
0 as |t| → 0.

Since we are assuming f is Fréchet differentiable at a we know something
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of f(a + t)− f(a)− dfa(t), so we rearrange (22) to include this term. Thus

R(t) =
(
f(a + t)− f(a)− dfa(t)

)
g(a + t)

+f(a) g(a + t) + dfa(t) g(a + t)− f (a) g (a)

−
(
g(a) dfa(t) + f(a) dga(t)

)
=

(
f(a + t)− f(a)− dfa(t)

)
g(a + t)

+
(
g(a + t)− g(a)− dga(t)

)
f(a)

+dfa(t)
(
g(a + t)− g(a)

)
. (23)

Divide both sides by |t|, t 6= 0, and let t→ 0.

By assumption both

f(a + t)− f(a)− dfa(t)

|t|
,

g(a + t)− g(a)− dga(t)

|t|
→ 0,

as t→ 0. This leaves the third term, (23) , which is bounded as∣∣∣∣∣dfa(t)
(
g(a + t)− g(a)

)
|t|

∣∣∣∣∣ < cf |t| |g(a + t)− g(a)|
|t|

,

by Lemma 34. But since g is Fréchet differentiable at a it is continuous at

a, i.e. g(a + t)→ g(a) as t→ 0. Thus∣∣∣∣dfa(t) (g(a + t)− g(a))

|t|

∣∣∣∣ ≤ cf |g(a + t)− g(a)| → 0

as t→ 0. Hence

lim
t→0

f(a + t) g(a + t)− f(a) g(a)−
(
g(a) dfa(t) + f(a) dga(t)

)
|t|

= 0.

Therefore fg is Fréchet differentiable at a with Fréchet derivative d (fg)a =

g(a) dfa + f(a) dga.

ii It suffices to prove that if g : U → R is Fréchet differentiable at a ∈ U and

g (a) 6= 0, then the quotient 1/g is Fréchet differentiable and

d

(
1

g

)
a

= − dga

g(a)2
.
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The general result follows using Part i.

With a, a + t ∈ U consider

1

g(a + t)
− 1

g(a)
+
dga(t)

g(a)2
. (24)

You should not forget to note that because g(a) 6= 0 and g is continuous

at a then g(a + t) 6= 0 for t sufficiently small. Thus, for such t, (24) is

well-defined. We can thus look at the inverses. Rearranging, (24) equals

g(a)2 − g(a) g(a + t) + dga (t) g(a + t)

g(a + t) g(a)2
.

The numerator here equals

−g(a)
(
g(a + t)− g(a)− dga(t)

)
+ dga(t)

(
g(a + t)− g(a)

)
.

Dividing by |t|, the first term → 0 as t→ 0 since g is differentiable at a,

the second term → 0 as t→ 0 by the argument seen above. Hence

lim
t→0

1

|t|

(
1

g(a + t)
− 1

g(a)
+
dga(t)

g(a)2

)
= 0.

Therefore 1/g is Fréchet differentiable at a with derivative −dga(t)/g(a)2 .�

8. The Chain Rule

The most important result unproved in the notes concerned the situation

Rp g→ Rn f→ Rm.

For the following proof it helps to use the following equivalent definition

of Fréchet differentiable.

Definition 35 The vector-valued function f : U ⊆ Rn → Rm is Fréchet

differentiable at a ∈ U if, and only if, there exists a linear map dfa :

Rn → Rm such that

lim
x→a

f(x)− f(a)− dfa(x− a)

|x− a|
= 0. (25)
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Theorem 26 Chain Rule Suppose that g : V ⊆ Rp → Rn is a function

defined on an open set V and f : U ⊆Rn → Rm is a function defined on an

open set U containing the image of g, i.e. g (V ) ⊆ U .

If g is Fréchet differentiable at a ∈ V and f is Fréchet differentiable at

b = g (a) ∈ V then the composite f ◦g : V → Rm is Fréchet differentiable at

a and

d (f ◦ g)a = dfb ◦ dga,

both sides linear functions from Rp to Rm.

Proof It suffices to prove that, given a ∈ V ,

lim
x→a

f(g(x))− f(g(a))− dfb ◦ dga(x− a)

|x− a|
= 0. (26)

For this we will show that dfb ◦ dga is a linear function satisfying the

definition yet, by definition, d (f ◦ g)a is the unique linear function, hence

d (f ◦ g)a = dfb ◦ dga.

For y ∈ U define the function

Fb (y) =


f(y)− f(b)− dfb (y − b)

|y − b|
if y 6= b,

0 if y = b.

Since f is Fréchet differentiable at b we have limy→b Fb (y) = 0 = Fb (0)

and so Fb is continuous at y = b.

Rearrange the definition to get

f(y) = f(b) + dfb (y − b) + |y − b|Fb(y) ,

for all y ∈ U .

Apply this with y = g (x) for x ∈ V . Then, since b = g (a),

f
(
g(x)

)
= f
(
g(a)

)
+ dfb

(
g(x)− g(a)

)
+ |g (x)− g (a)|Fb(g (x)) .

Apply this within the left hand side of (26) ,

f
(
g(x)

)
− f
(
g(a)

)
− dfb ◦ dga(x− a)

|x− a|
=

dfb
(
g(x)− g(a)

)
− dfb ◦ dga(x− a)

|x− a|

+
|g(x)− g(a)|
|x− a|

Fb

(
g(x)

)
. (27)
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In the first term on the right hand side

dfb
(
g(x)− g(a)

)
− dfb ◦ dga(x− a)

|x− a|
=

dfb
(
g(x)− g(a)

)
− dfb

(
dga(x− a)

)
|x− a|

= dfb

(
g(x)− g(a)− dga(x− a)

|x− a|

)
,

since dfb is a linear function. But further, since dfb is linear it is continuous

and so

lim
x→a

dfb

(
g(x)− g(a)− dga(x− a)

|x− a|

)
= dfb

(
lim
x→a

g(x)− g(a)− dga(x− a)

|x− a|

)
= dfb (0) since g is differentiable at a,

= 0, (28)

since dfb is linear.

For the second term on the right hand side of (27) , we make use of

Lemma 36 If g : V ⊆Rp → Rn if differentiable at a ∈ V then there exists

δ > 0 and C > 0 such that

|g (x)− g (a)| ≤ C |x− a|

for all x : |x− a| < δ.

Proof Choose ε = 1 in the definition of Fréchet differentiable (25) to find

δ > 0 such that if |x− a| < δ then∣∣∣∣g(x)− g(a)− dga(x− a)

|x− a|

∣∣∣∣ < 1.

Thus

|g(x)− g(a)| < |dga(x− a)|+ |x− a| .

Yet dga (t) is a linear function and we know that for any linear function there

exists a constant such that |dga (t)| < κ |t|. This all combines to give the

stated result with C = κ+ 1. �
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Then, for |x− a| < δ,

|g (x)− g (a)|
|x− a|

Fb

(
g(x)

)
≤ CFb

(
g(x)

)
.

Yet we have seen that Fb is continuous at b, so by the Composite Rule for

continuous functions,

lim
x→a

Fb

(
g(x)

)
= Fb

(
lim
x→a

g(x)
)

= Fb(b) = 0.

Thus

lim
x→a

|g(x)− g(a)|
|x− a|

Fb

(
g(x)

)
= 0. (29)

Combining (28) and (29) gives (26) as required. �

From a dislike of not using material I have written up, I include a second

proof of the Chain Rule.

Alternative Proof of Chain Rule This is a different proof to that pre-

sented in the notes; having written it up I didn’t want to waste the effort.

But first, recall

Lemma If L : Rn → Rm is a linear map then there exists a positive constant

C (depending on L) such that |L (t)| ≤ C |t| for all t ∈ Rn.

Proof of Chain Rule For w : a + w ∈ V define

R(w) = (f ◦ g) (a + w)− (f ◦ g) (a)− (dfb ◦ dga) (w) . (30)

To show that dfb ◦ dga is the Fréchet derivative of f ◦ g it suffices to show

that R (w) / |w| → 0 as w→ 0.

1) Rearrangement of R(w) / |w|.
Write

r1(w) = g(a + w)− g(a)− dga(w) ,

for w : a + w ∈ V . The assumption that g is Fréchet differentiable at a

implies r1 (w) / |w| → 0 as w→ 0.
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Similarly write

r2(u) = f(b + u)− f(b)− dfb(u) ,

for u : b + u ∈ U . The assumption that f is Fréchet differentiable at b

implies r2 (u) / |u| → 0 as u→ 0.

Motivated by the (f ◦ g) (a + w) term in (30) rearrange the definition of

r1 as

g(a + w) = g(a) + dga(w) + r1 (w) .

Apply f to both sides:

(f ◦ g) (a + w) = f
(
g(a + w)

)
= f
(
g(a) + dga(w) + r1(w)

)
= f

(
b + dga(w) + r1(w)

)
, (31)

since b = g (a). Rearrange the definition of r2 as

f(b + u) = f(b) + dfb(u) + r2(u) .

Motivated by (31) apply this with u = dga (w) + r1 (w) getting

f
(
b + dga(w) + r1(w)

)
= f

(
b
)

+ dfb
(
dga(w) + r1 (w)

)
+ r2

(
dga(w) + r1(w)

)
= f

(
g(a)

)
+ dfb

(
dga(w)

)
+ dfb

(
r1(w)

)
+r2

(
dga(w) + r1(w)

)
, (32)

having used the fact that dfb is a linear function.

Combining (31) and (32) gives

(f ◦ g) (a + w) = (f ◦ g) (a)+(dfb ◦ dga) (w)+dfb
(
r1(w)

)
+r2

(
dga(w)+r1(w)

)
.

Substituting this into (30) gives

R(w) = dfb
(
r1(w)

)
+ r2

(
dga (w) + r1(w)

)
.

Thus, for w 6= 0,

R(w)

|w|
=
dfb
(
r1(w)

)
|w|

+
r2
(
dga(w) + r1(w)

)
|w|

. (33)
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2) Proof of R(w)/|w| → 0 as w→ 0.

2i) First term on RHS (33) . Again using the fact that dgb is linear, we see

that the first term on the right satisfies

dfb
(
r1(w)

)
|w|

= dfb

(
r1(w)

|w|

)
→ dfb(0) = 0, (34)

as w → 0. This is because r1 (w)/|w| → 0 as w → 0 and dfb is continuous

at 0 (being a linear function).

2ii) For the second term on RHS (33) first consider |dga(w) + r1(w)|.

For the linear function dga there exists C > 0 such that |dga(w)| < C |w|
for all w.

We are also assuming that r1(w)/|w| → 0 as w → 0. Take ε = 1

in the definition of convergence to find δ1 > 0 such that if |w| < δ1 then

|r1(w)/|w| − 0| < 1, i.e. |r1(w)| ≤ |w| (equality when w = 0).

Combine to get that if |w| < δ1 then, starting with the triangle inequality,

|dga(w) + r1(w)| ≤ |dga(w)|+ |r1(w)| ≤ (C + 1) |w| . (35)

Next consider r2
(
dga (w)+r1 (w)

)
. Let ε > 0 be given. Since r2 (u)/|u| → 0

as u → 0 there exists δ2 > 0 such that if |u| < δ2 then |r2 (u)/|u|| <
ε/ (c+ 1), i.e.

|r2 (u)| < ε

C + 1
|u| . (36)

We will apply this with u = dga(w) + r1 (w).

If we demand (c+ 1) |w| < δ2 (along with |w| < δ1) then (35) implies

that

|dga(w) + r1 (w)| < δ2

in which case∣∣r2(dga(w) + r1(w)
)∣∣ < ε

C + 1
|dga(w) + r1(w)| ,
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by (36). Use (35) again to get, for |w| < min (δ1, δ2/(C + 1)),

∣∣r2(dga(w) + r1(w)
)∣∣ < ε

C + 1
(C + 1) |w| , i.e.

∣∣r2(dga(w) + r1(w)
)∣∣

|w|
< ε.

True for all ε > 0 implies

lim
w→0

∣∣r2(dga(w) + r1(w)
)∣∣

|w|
= 0.

Back in (33) with (34) gives us limw→0R(w)/|w| = 0 as required. �
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